Lab 2 (Filtering and Sorting)
Step 1. Import the necessary libraries
Step 2. This is the data given as a dictionary
# Create an example dataframe about a fictional army
raw_data = {'regiment': ['Nighthawks', 'Nighthawks', 'Nighthawks', 'Nighthawks', 'Dragoons', 'Dragoons', 'Dragoons', 'Dragoons', 'Scouts', 'Scouts', 'Scouts', 'Scouts'],
'company': ['1st', '1st', '2nd', '2nd', '1st', '1st', '2nd', '2nd','1st', '1st', '2nd', '2nd'],
'deaths': [523, 52, 25, 616, 43, 234, 523, 62, 62, 73, 37, 35],
'battles': [5, 42, 2, 2, 4, 7, 8, 3, 4, 7, 8, 9],
'size': [1045, 957, 1099, 1400, 1592, 1006, 987, 849, 973, 1005, 1099, 1523],
'veterans': [1, 5, 62, 26, 73, 37, 949, 48, 48, 435, 63, 345],
'readiness': [1, 2, 3, 3, 2, 1, 2, 3, 2, 1, 2, 3],
'armored': [1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1],
'deserters': [4, 24, 31, 2, 3, 4, 24, 31, 2, 3, 2, 3],
'origin': ['Arizona', 'California', 'Texas', 'Florida', 'Maine', 'Iowa', 'Alaska', 'Washington', 'Oregon', 'Wyoming', 'Louisana', 'Georgia']}
Step 3. Create a dataframe and assign it to a variable called army.
Don't forget to include the columns names
In [ ]:
Step 4. Set the 'origin' colum as the index of the dataframe
In [ ]:
Step 5. Print only the column veterans
In [ ]:
Step 6. Print the columns 'veterans' and 'deaths'
In [ ]:
Step 7. Print the name of all the columns.
In [ ]:
Step 8. Select the 'deaths', 'size' and 'deserters' columns from Maine and Alaska
In [ ]:
Step 9. Select the rows 3 to 7 and the columns 3 to 6
In [ ]:
Step 10. Select every row after the fourth row
In [ ]:
Step 11. Select every row up to the 4th row
In [ ]:
Step 12. Select the 3rd column up to the 7th column
In [ ]:
Step 13. Select rows where df.deaths is greater than 50
In [ ]:
Step 14. Select rows where df.deaths is greater than 500 or less than 50
In [ ]:
Step 15. Select all the regiments not named "Dragoons"
In [ ]:
Step 16. Select the rows called Texas and Arizona
In [ ]:
Step 17. Select the third cell in the row named Arizona
In [ ]:
Step 18. Select the third cell down in the column named deaths
In [ ]:
Comments
Post a Comment